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Using the N a v i e r - S t o k e s  equation the stability of a layer  of viscous liquid flowing down a 
solid surface under gravity is studied in the l inear  formulation. The effect of surface ten-  
sion and the inclination of the solid surface on the limits of stabili ty are examined also. 
Curves  are  calculated for the neutral  stabili ty with respect  to two types of perturbations - 
surface  waves and shear  waves.  

1 .  F o r m u l a t i o n  o f  t h e  P r o b l e m  

The detailed study of the wave flow of a layer  of viscous liquid down an inclined plane began with the 
papers  of Kapitsa and Kapitsa [1, 2]. In [3-6] the problem of the stability of the runoff of a film with a free 
surface is reduced to the problem of finding the eigenvalues of the O r r - S o m m e r f e l d  equation, which enables 
one to calculate the limits of stability of the pa rame te r s  on the plane. One of the l imits,  corresponding to 
per turbat ions  of the type of surface waves, was found analytically in [3-5l for small  e r e .  The existence 
of a second limit corresponding to per turbat ions of the type of shear  waves was f i rs t  noted in [3], and this 
neutral  curve was calculated in [6] using asymptot ical ly  large ceRe. The papers  [7-10] are devoted to a 
study of the nonlinear problem. Paper  [101 contains an extensive l ist  of r e fe rences  on problems of the non- 
l inear  stability of a falling film. 

We consider  a layer  of viscous incompressible  liquid flowing down a plane surface inclined at an angle 
0 < fl -< 90 ~ with the horizontal  (Fig. 1). We assume that surface tension cr acts on the free boundary. 

We take as units of length, t ime, and mass  d, d2v -~, and pd3 respect ively,  w h e r e d  is the average th iek-  
hess of the layer ,  v is the kinematic viscosi ty ,  and p is the density. We introduce the dimensionless Rey ,  
holds number Re =0.5 sin flgd3/v 2 and the Weber number W = a d / p v  2. We seek a solution of the hydrody-  
namics  equations in dimensionless form having a period 27r/& in x. The flow of the liquid is due to gravity.  
It is c lear  f rom the equations of motion that the average of the longitudinal p r e s su re  gradient over a period 
does not depend on y; we assume it is zero:  
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Fig. I 

On the free surface y = l + a ( x ,  t) the following dynamic and, 
kinematic conditions are  satisfied [11]: Pnn + Pl = 
W a ( l + a 2 ) - 3 / 2 i  PnT=0; a t §  , where t is the t ime,  
a(x, t) is the per turbat ion of the free boundary, Plan and 
and Pn~ are the normal  and tangential  s t r e s ses ,  Pl =const  
is the a tmospher ic  p r e s su re ;  u and v are  the components 
of velocity, vanishing at the solid wall. Under these con- 
dittons there is a steady plane paral le l  flow 

uo=ReU(y); v0=0; po~p~-~-ReU'ctg ~(U=2y--y~) (1.1) 

with an unperturbed free boundary a = 0. 
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L i n e a r i z i n g  the equa t ions  of  mo t ion  in the G r o m e k - L a m b  f o r m  in the ne ighborhood  of the flow (1.1) 
and finding so lu t ions  p r o p o r t i o n a l  to exp  i a ( x - R e c t )  we obtain  an e igenva lue  p r o b l e m  for  the p a r a m e t e r  c: 

u'=--cr v'=--u; uiO)=u(O)=O; v'(t)=Re(t--c)a; 

o~'= i~zRe(cu-- U'v)--ioch; h '= ReU' u--a"-Recv+(ga--ReU)o; 
h+(2ia--Re)u--(2Re ctg ~+a~-W)a=0; co-~2a-%'-~2Rea=0, (y=l). 

(1.2) 

He re  u, iotv, co, h, and a a r e ,  r e s p e c t i v e l y ,  the amp l i t udes  of the p e r t u r b a t i o n  of  the longi tudinal  and t r a n s -  
v e r s e  ve loc i t i e s ,  the v o r t i c i t y ,  the to t a l  p r e s s u r e ,  and the  f r ee  boundary .  

2 .  R e s u l t s  o f  t h e  C a l c u l a t i o n s  

To  ca lcu la te  the n e u t r a l  c u r v e s  o v e r  a wide range  of the p a r a m e t e r s  (the ac tua l  ca lcu la t ions  w e r e  
made  fo r  0-<~-< 24, 0 <Re -< 105) it is conven ien t  to use  the  d i f f e ren t i a l  p ivot  me thod  p r o p o s e d  in [12]. 

We in t roduce  the nota t ion  

% 00) 
" 0 - -  i ~  

A=l=i~tter" --~:l~ec /; - 

and wr i t e  (1.2) in the f o r m  

q~ = Asiql + As2q2, (s = t, 2). (2.1) 

Set t ing ql =Gq2 in (2.1) and tak ing  account  of  the nons l ip  condi t ion we find the 2 •  m a t r i x  G(y) as  a so lu t ion  
of  the Cauchy  p r o b l e m  

Gt= A nG-~ A I2--GA ~lG--GA22, G(0)=0. (2.2) 

We give the boundary  condi t ions  on the f r ee  s u r f a c e  the m a t r i x  f o r m  

Blql(1) _ B2q2(l)@ Na=O; 

(2 ia - -Re  0 'J~" . . . .  (' 01'11 C �9 ('--2Re ctg~--~"-" ')  
B , =  00 >21(z ; ~P~ , N=  --2Re 

\ \ 0 0,, ,, Re(l--c)  . 

f r o m  which,  a f t e r  subs t i tu t ing  ql(1) =G(1) q2(1), we ob ta in the  c o m p l e x  equa t ion  

F~.det ii M i X :: =0; M=B1G(I)@B2, 
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TABLE 1 

No. Liquid ] v.lo.,m2/sec w ad ~') ~ o, kg]mS -ov--.r 

- i ~ 

Glycerin --. . . . .  59,4 
Ethyl alcohol . , 22,8 
Water . . . . . . . .  72,75 
Mercury . . . . . . .  460 

Arbitrary 
t 259 

790 
t 000 

13 550 

Arbitrary 
117 500 

22O 
,t02 
!1,4 

0 
0,0342 
5 962 

72750 
26i.104 

which reduces  to a sys tem of two rea l  equations 

Fr (~, Re, c, ~, W)=0; F~ (~, Re, c, ~, W)=0 (2.3) 

for the pa ramete r s  on the neutra l  stability curve (c is real) .  Equations (2.3) were solved by Newton's  
method, approximating the par t ia l  der ivat ives  by finite differences,  and the differential  equation (2.2) was 
integrated numer ica l ly  by the s tandard Runge-Kut t a  method with automatic choice of step. The roots  were 
found by varying ~ or  Re; the implicit  flmctions c(~), Re(a) o r  c(Re), ~(Re) were calculated for fixed p 
and W, and the initial approximations for Newton,s method were made by Aitken extrapolation. The step 
in the pa rame te r  was chosen automatical ly depending on the number  of i terat ions neces sa ry  to achieve the 
p resc r ibed  accuracy;  this saves computing t ime.  

The calculations were made for  the values of the Weber  number  l is ted in Table 1. The physical  con- 
stants were taken at 20~ f rom [13] for an average layer  thickness d=10 -3 m. Figures  2 and 3 i l lustrate 
the effect of surface tension on the stabili ty l imits .  Two kinds of neutra l  curves  are  shown; the lower (1, 
2, etc.) cor respond to per turbat ions  of the type of surface waves, and the upper  (1', 2',  etc.) to pe r tu rba -  
tions of the type of shear  waves.  The curves  1 and 1' ,  2 and 2' etc.  were calculated for a fixed slope (Fig. 
2, p =1~ Fig. 3, fi =90 ~ and the Weber numbers  listed in lines 1-5 of Table 1. For  compar ison the open 
curve of Fig. 2 is the neutra l  curve obtained in [6] by the asymptotic  method in the approximation a r e  >> 1 
(W =0, /3 =1~ According to [3] calculations conf i rmed that for a ver t ica l  wall (fl =90 ~ and W =0 the axis 
Re =0 is the curve of netural  stabil i ty with respect  to surface waves (curve 1 of Fig. 3). Figure 4 shows 
neutral  curves  of two types for w = 72750 (water). The stability limits a and a '  are  plotted for the angle of 
inclination p =90~ 5 and 5, are for fi =1 ~ In accordance with the asymptot ical ly  small  values of a obtained 
in [3-5] the neutral  curves  for  surface waves emerge  from the point a =0, Re =1.25 cot fi and, as ca lcula-  
tion shows, extend to infinity with increas ing ~, the more  steeply the l a rge r  W (or the smal le r  the angle fi). 
An increase  in the surface tension (decrease in the angle of inclination) has the opposite effect on the tongue- 
shaped netural  curves  of the second type: the curves  drop downward, enabling one to speak of the effect of 
destabil ization. The destabilizing effect is weak for small  W but increases  with increas ing W. For  large 
Reynolds numbers  (~10 S) the curves  of the second family plotted for  var ious  values of fl and W pract ical ly  
coincide. It is important  to note that for large enough W (small enough fl) the neutral  curves  of the two 
types in tersect  (Figs. 2, 3) forming a range of wave numbers  in which the role of the mos t  dangerous p e r -  
turbat ions shifts to shear  waves.  

The dependence of the phase velocity of surface waves on the wave number  is shown graphical ly in 
Fig. 5, where the maximum velocity of paral le l  flow is chosen as a unit. Curves  1 and 2 (fl =45 ~ correspond 
to W =0 and 2.35 �9 106. Calculations show that the velocity of propagation of shortwave per turbat ions is 
slightly different f rom unity - the value of the velocity of the p r ima ry  flow at the free surface (e.g. on curve 
1 for ~ =23.5, c =1.0007). A s imi lar  resul t  was found in [14] for  another problem with a free boundary. 

In experiments  with water  and ethyl alcohol [2], in par t icular ,  the c r i t ica l  Reynolds number  was found 
below which wave behavior  for the runoff of a liquid film does not develop. Measurements  for water  (W = 
7400) gave ~ =0.092, Re =8.06, and for alcohol (W=1145) c~ =0.143, Re =5.02. The cr i t ica l  Reynolds numbers  
calculated on B]~SM-4 and M-222 computers  for  wave numbers  taken f rom the exper imenta l  data were 6.35 
for water  and 3.97 for  alcohol, which are somewhat below the exper imental  cr i t ica l  values.  
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