STABILITY OF FLOW OF A VISCOUS LIQUID DOWN
AN INCLINED PLANE

B. N. Goncharenko and A. L. Urintsev UDC 532,592

Using the Navier—=Stokes equation the stability of a layer of viscous liquid flowing down a
solid surface under gravity is studied in the linear formulation, The effect of surface ten-
sion and the inclination of the solid surface on the limits of stability are examined also.
Curves are calculated for the neutral stability with respect to two types of perturbations —
surface waves and shear waves,

1. Formulation of the Problem

The detailed study of the wave flow of a layer of viscous liquid down an inclined plane began with the
papers of Kapitsa and Kapitsa [1, 2]. In [3-6] the problem of the stability of the runoff of a film with a free
surface is reduced to the problem of finding the eigenvalues of the Orr—Sommerfeld equation, which enables
one to calculate the limits of stability of the parameters on the plane. One of the limits, corresponding to
perturbations of the type of surface waves, was found analytically in [3-5] for small ®Re. The existence
of a second limit corresponding to perturbations of the type of shear waves was first noted in [3], and this
neutral curve was calculated in [6] using asymptotically large @Re. The papers [7-10] are devoted to a
study of the nonlinear problem. Paper {10] contains an extensive list of references on problems of the non-
linear stability of a falling film,

We consider a layer of viscous incompressible liquid flowing down a plane surface inclined at an angle
0 <8 =90° with the horizontal (Fig, 1). We assume that surface tension o acts on the free boundary,

We take as units of length, time, and mass d, d2v~!, and pd® respectively, whered is the averagethick-
ness of the layer, v is the kinematic viscosity, and p is the density. We introduce the dimensionless Rey-
nolds number Re =0.5 sin Sgd®/v? and the Weber number W =0 d/pv?, We seek a solution of the hydrody-
namics equations in dimensionless form having a period 2n/a in x. The flow of the liquid is due to gravity.
1t is clear from the equations of motion that the average of the longitudinal pressure gradient over a period
does not depend on y; we assume it is zero:
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On the free surface y=1+a(x, t) the following dynamic and.

& kmemat;c_gy;&dﬁmns are satisfied [11]: Pr_m"'Pi"'. »

RS Wal(l +a®)~% 2 Py, =0; g +uay =v, where t is the time,
SN a(x, t) is the perturbation of the free boundary, Py, and

M i , and Py are the normal and tangential stresses, p, =const

is the atmospheric pressure; u and v are the components
of velocity, vanishing at the solid wall, Under these con-
ditions there is a steady plane parallel flow

LETTITI77T,

u=ReUW); v=0; po=p:+Relctg B(U=2y—1?) 1.1

Fig. 1 with an unperturbed free boundary =0,
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Linearizing the equations of motion in the Gromek—TLamb form in the neighborhood of the flow (1.1)
and finding solutions proportional to exp ia (x-Rect) we obtain an eigenvalue problem for the parameter c:

W= —glr—w, v=—u; u@)=u(0)=0; v(l)=Re(l—c)a;
o’=iaRe(cu— U'v)—iah; B"'=Rel u—a’Recv+(ia—~Rel)w;
h+(2ia—Re)u—(2Re ctg p+a2W)a=0; o-20%+2Rea=0, (y=1).

(1.2)

Here u, iav, w, h, and a are, respectively, the amplitudes of the perturbation of the longitudinal and trans-
verse velocities, the vorticity, the total pressure, and the free boundary.

2. Results of the Calculations

To calculate the neutral cuirves over a wide range of the parameters (the actual calculations were
made for 0=o =24, 0 <Re =109 it is convenient to use the differential pivot method proposed in [12].

We introduce the notation

— u. — m‘. A —_ O ———CZZ. A — »‘10)-
(h_(v)' %—(h). an=\{_4 5 ) 221y of

iz Rec —ia Rel’ F 0 — i
= i A= B
Ay (Rel"’ — a?Rec ,)’ » (icx—ﬁeﬁ Q )
and write (1.2) in the form
4y = A1+ dgpa, (s=1, 2). (2.1)

Setting qq =Gq, in (2,1) and taking account of the nonslip condition we find the 2 X2 matrix G(y) as a solution
of the Cauchy problem

6= 4 1, G- A 13— Gl o, 0— Gl 2a, G(0)=0, (2.2)

We give the boundary conditions on the free surface the matrix form
B1qy (1)~ B2qa(1)--Na=0;

(2iec —Re 0 o ‘— 2Re ctg f — W
B1=( 0 — 2a? |; BE:-(—IO); .\'=( —2Re
0 —1 \ 00, . Re(d—o) ]

from which, after substituting q;(1) =G(1) 45(1), we obtain the complex equation
F=det | M} N =0; M=B16(1)+Ba,
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TABLE 1

P d

No, Liquid 102, ‘ 0. ke/m3 ‘ w10t mhec l V=g

1 = 0 © Arbitrary Arbitrary 0

o | Glycerin . 59,4 1259 117 500 0,0342

3 Ethyl alcohol ..o 22,8 790 220 5962

4 | Water. . . .. .... 72,75 1000 102 72750

5 | Mercury. . . - . . . - 460 13 550 1,4 261 10
which reduces to a system of two real equations

Fr (&, Re, ¢, f, W)=0; F; (&, Re, ¢, B, W)=0 (2.3)

for the parameters on the neutral stability curve (c is real). Equations (2.3) were solved by Newton's
method, approximating the partial derivatives by finite differences, and the differential equation (2.2} was
integrated numerically by the standard Runge —Kutta method with automatic choice of step. The roots were
found by varying @ or Re; the implicit functions c¢(@), Re (@) or ¢(Re), @(Re) were calculated for fixed P
and W, and the initial approximations for Newton's method were made by Aitken extrapolation, The step

in the parameter was chosen automatically depending on the number of iterations necessary to achieve the
prescribed accuracy; this saves computing time,

The calculations were made for the values of the Weber number listed in Table 1. The physical con-
stants were taken at 20°C from [13] for an average layer thickness d=10"% m. Figures 2 and 3 illustrate
the effect of surface tension on the stability limits, Two kinds of neutral curves are shown; the lower (1,

2, ete.) correspond to perturbations of the type of surface waves, and the upper (11, 2'; etc.) to perturba~
tions of the type of shear waves. The curves 1 and 1', 2 and 2' etc. were calculated for a fixed slope (Fig.
2, B8 =1° Fig, 3, B =90°) and the Weber numbers listed in lines 1-5 of Table 1. For comparison the open
curve of Fig. 2 is the neutral curve obtained in [6] by the asymptotic method in the approximation c¢Re>1
(W=0, 8=1°, According to [3] calculations confirmed that for a vertical wall (3 =90°) and W =0 the axis
Re =0 is the curve of netural stability with respect to surface waves (curve 1 of Fig, 3). Figure 4 shows
neutral curves of two types for w=72750 (water). The stability limits a and a' are plotted for the angle of
inclination £ =90° 6 and 6! are for 8 =1°. In accordance with the asymptotically small values of @ obtained
in [3-5] the neutral curves for surface waves emerge from the point @ =0, Re =1.25 cot 8 and, as calcula-
tion shows, extend to infinity with increasing «, the more steeply the larger W (or the smaller the angle B).
An increase in the surface tension (decrease in the angle of inclination) has the opposite effect on the tongue-
shaped netural curves of the second type: the curves drop downward, enabling one to speak of the effect of
destabilization., The destabilizing effect is weak for small W but increases with increasing W. For large
Reynolds numbers (~10°) the curves of the second family plotted for various values of 8 and W practically
coincide. It is important to note that for large enough W (small encugh 8) the neutral curves of the two
types intersect {Figs. 2, 3) forming a range of wave numbers in which the role of the most dangerous per-
turbations shifts to shear waves.

The dependence of the phase velocity of surface waves on the wave number is shown graphically in
Fig. 5, where the maximum velocity of parallel flow is chosen as a unit. Curves 1 and 2 (8 =45°) correspond
to W=0 and 2.35-10%. Calculations show that the velocity of propagation of shortwave perturbations is
slightly different from unity — the value of the velocity of the primary flow at the free surface (e.g. on curve
1 for @ =23.5, ¢=1,0007). Asimilar result was found in [14] for another problem with a free boundary,

In experiments with water and ethyl alcohol [2], in particular, the critical Reynolds number was found
below which wave behavior for the runoff of a liquid film does not develop. Measurements for water (W =
7400) gave @ =0,092, Re =8,06, and for alcohol (W=1145) @ =0,143, Re =5.02. The critical Reynolds numbers
calculated on BESM~4 and M-222 computers for wave numbers taken from the experimental data were 6.35
for water and 3.97 for alcohol, which are somewhat below the experimental critical values,
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